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Since the publication of the sixth edition of this text in 2010 the importance of the 
proper application of statistical methods to chemical and biochemical measurements 
has continued to grow, as has the number and sophistication of the methods them-
selves. Enormous amounts of information on such methods, along with critical com-
parative assessments and examples of their application, are freely available from 
numerous websites. In this new edition we have tried to reflect some of these develop-
ments, while retaining from previous editions a pragmatic and, as far as possible, non-
mathematical approach to statistical calculations. Many of the changes and additions 
have been made in response to readers and reviewers of the previous edition, and we 
are very grateful to them for their guidance.

Most importantly, the addition of a third author has allowed us to expand signifi-
cantly the parts of Chapter 4 that deal with uncertainty estimation, through the 
Guide to the Estimation of Uncertainty in Measurement (GUM), and the validation of 
analytical methods. These topics are especially relevant in areas such as food analysis, 
forensic sciences and medical and environmental analysis, and are critical to the 
maintenance of the quality of analytical measurements. Other areas where the text 
has been more modestly expanded include the application of Bayesian methods, 
which are now increasingly being used in many areas (Chapter 3); testing for normal-
ity of distribution (Chapter 3); the estimation of limits of detection in calibration 
experiments (Chapter 5); the use of robust statistical methods (Chapter 6); and some 
additional material on experimental designs (Chapter 7). Major developments have 
also occurred in the application of multivariate methods (Chapter 8) but the con-
straints of space and the complexity of the methods have persuaded us to leave those 
topics untouched.

As in previous editions we have provided both worked examples and exercises for 
the reader. The former have again been implemented using Excel® or Minitab®, these 
being the programs perhaps most widely used in education and by practising scien-
tists. Both are repeatedly updated; and add-ins (some free, others not) for Excel now 
provide a great number of advanced calculation methods.
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Finally, we thank the Royal Society of Chemistry for permission to use data from 
papers published in The Analyst, and also the patient and expert staff at Pearson 
Education, especially Janey Webb, Agnibesh Das and Payal Rana.

James N. Miller
Jane C. Miller
Robert D. Miller
August 2017



To add yet another volume to the already numerous texts on statistics might seem 
to be an unwarranted exercise, yet the fact remains that many highly competent 
scientists are woefully ignorant of even the most elementary statistical methods. It 
is even more astonishing that analytical chemists, who practise one of the most 
quantitative of all sciences, are no more immune than others to this dangerous, but 
entirely curable, affliction. It is hoped, therefore, that this book will benefit analyti-
cal scientists who wish to design and conduct their experiments properly, and 
extract as much information from the results as they legitimately can. It is intended 
to be of value to the rapidly growing number of students specialising in analytical 
chemistry, and to those who use analytical methods routinely in everyday labora-
tory work.

There are two further and related reasons that have encouraged us to write this 
book. One is the enormous impact of microelectronics, in the form of microcomput-
ers and handheld calculators, on statistics: these devices have brought lengthy or dif-
ficult statistical procedures within the reach of all practising scientists. The second is 
the rapid development of new ‘chemometric’ procedures, including pattern recogni-
tion, optimisation, numerical filter techniques, simulations and so on, all of them 
made practicable by improved computing facilities. The last chapter of this book 
attempts to give the reader at least a flavour of the potential of some of these newer 
statistical methods. We have not, however, included any computer programs in the 
book – partly because of the difficulties of presenting programs that would run on all 
the popular types of microcomputer, and partly because there is a substantial range of 
suitable and commercially available books and software.

The availability of this tremendous computing power naturally makes it all the 
more important that the scientist applies statistical methods rationally and cor-
rectly. To limit the length of the book, and to emphasise its practical bias, we have 
made no attempt to describe in detail the theoretical background of the statistical 
tests described. But we have tried to make it clear to the practising analyst which 
tests are appropriate to the types of problem likely to be encountered in the labora-
tory. There are worked examples in the text, and exercises for the reader at the end 
of each chapter. Many of these are based on the data provided by research papers 
published in The Analyst. We are deeply grateful to Mr. Phil Weston, the Editor, for 
allowing us thus to make use of his distinguished journal. We also thank our 
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colleagues, friends and family for their forbearance during the preparation of the 
book; the sources of the statistical tables, individually acknowledged in the appen-
dices; the Series Editor, Dr. Bob Chalmers; and our publishers for their efficient 
cooperation and advice.

J. C. Miller
J. N. Miller
April 1984
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a	 –	 intercept of regression line
b	 –	 gradient of regression line
c	 –	 number of columns in two-way ANOVA
C	 –	 correction term in two-way ANOVA
C	 –	 used in Cochran’s text for homogeneity of variance
d	 –	 difference between paired vaues
F	 –	 the ratio of two variances
G	 –	 used in Grubbs’ test for outliers
h	 –	 number of samples in one-way ANOVA
k	 –	 coverage factor in uncertainty estimates
m	 –	 arithmetic mean of a population
M	 –	 number of minus signs in Wald–Wolfowitz runs test
n	 –	 sample size
N	 –	 number of plus signs in Wald–Wolfowitz runs test
N	 –	 total number of measurements in two-way ANOVA
v	 –	 number of degrees of freedom
P(r)	 –	 probability of r
Q	 –	 Dixon’s Q, used to test for outliers
r	 –	 product–moment correlation coefficient
r	 –	 number of rows in two-way ANOVA
r	 –	 number of smallest and largest observations omitted in trimmed 

mean calculations
R2	 –	 coefficient of determination
R′2	 –	 adjusted coefficient of determination
rs	 –	 Spearman rank correlation coefficient
s	 –	 standard deviation of a sample
s2	 –	 variance of a sample
sy/x	 –	 standard deviation of y-residuals
sb	 –	 standard deviation of slope of regression line
sa	 –	 standard deviation of intercept of regression line
s(y>x)w	 –	 standard deviation of y-residuals of weighted regression line
sx0

	 –	 standard deviation of x-value estimated using regression line
sB	 –	 standard deviation of blank
sxE

	 –	 standard deviation of extrapolated x-value
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sx0w
	 –	 standard deviation of x-value estimated by using weighted  

regression line
s	 –	 standard deviation of a population
s2

0	 –	 measurement variance
s2

1	 –	 sampling variance
t	 –	 quantity used in the calculation of confidence limits and in 

significance testing of mean (see Section 2.4)
T	 –	 grand total in ANOVA
T1 and T2	 –	 test statistics used in the Wilcoxon rank sum test
u	 –	 standard uncertainty
U	 –	 expanded uncertainty
w	 –	 range
wi	 –	 weight given to point on regression line
x	 –	 arithmetic mean of a sample
x0	 –	 x-value estimated by using regression line
x0	 –	 outlier value of x
xi
∼ 	 –	 pseudo-value in robust statistics
xE	 –	 extrapolated x-value
xw	 –	 arithmetic mean of weighted x-values
X2	 –	 quantity used to test for goodness-of-fit
yn	 –	 y-values predicted by regression line
y0	 –	 signal from test material in calibration experiments
yw	 –	 arithmetic mean of weighted y-values
yB	 –	 signal from blank
z	 –	 standard normal variable



Introduction1

Major topics covered in this chapter

•	 Errors in analytical measurements

•	 Gross, random and systematic errors

•	 Precision, repeatability, reproducibility, bias, accuracy, trueness

•	 Planning experiments

•	 Statistical calculations

	 1.1	 Analytical problems

Analytical scientists face both qualitative and quantitative problems. For example, 
the presence of boron in distilled water is very damaging in the manufacture of 
electronic components, so we might be asked: ‘Does this distilled water sample 
contain any boron?’ The comparison of soil samples in forensic science provides 
another qualitative problem: ‘Could these two soil samples have come from the 
same site?’ Other problems are single- or multi-component quantitative ones: 
‘How much albumin is there in this sample of blood serum?’ ‘This steel sample 
contains small amounts of chromium, tungsten and manganese – how much  
of each?’

Modern analytical chemistry is almost always a quantitative science, as a numer-
ical result will generally be much more valuable than a qualitative one. Only by 
finding how much boron is present in a water sample can we decide whether its level 
is worrying, or how it might be reduced. Sometimes only a quantitative result has 
any value: almost all samples of blood serum contain albumin, so the only question 
is – how much? Two soil samples might be compared using particle size analysis, in 
which the proportions of the soil particles falling within a number, say ten, of particle-
size ranges are determined. Each sample would then be characterised by these ten 
pieces of data, which can be used (see Chapter 8) to provide a quantitative rather 
than just a qualitative assessment of their similarity.
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	 1.2	 Errors in quantitative analysis

Since quantitative methods will be the norm in an analytical laboratory, we must 
accept that the errors that occur in such methods are crucially important. Our guiding 
principle will be that no quantitative results are of any value unless they are accompanied 
by some estimate of the errors inherent in them. (This principle naturally applies to any 
field of study in which numerical experimental results are obtained.) Several exam-
ples illustrate this idea, and they also introduce some types of statistical problem that 
we shall meet and solve in later chapters.

Suppose we synthesise an analytical reagent which we believe to be entirely new. 
We study it using a spectrometric method and it gives a value of 104 (normally our 
results will be given in proper units, but in this hypothetical example we use purely 
arbitrary units). On checking the reference books, we find that no compound previ-
ously discovered has given a value above 100 when studied by the same method in the 
same experimental conditions. So have we really discovered a new compound? The 
answer clearly depends on the errors associated with that experimental value of 104. 
If further work suggests that the result is correct to within 2 units, i.e. the true value 
probably lies in the range 104 ; 2, then a new compound has probably been discov-
ered. But if the error may amount to 10 units (i.e. 104 ; 10), then it is quite likely that 
the true value is actually less than 100, in which case a new discovery is far from cer-
tain. So our knowledge of the experimental errors is crucial (in this and every other 
case) to the correct interpretation of the results. Statistically this example involves the 
comparison of our experimental result with an assumed or reference value: this topic 
is studied in detail in Chapter 3.

Analysts commonly perform several replicate determinations in the course of a sin-
gle experiment. (The value and significance of such replicates is discussed in detail in 
the next chapter.) Suppose we perform a titration four times and obtain values of 
24.69, 24.73, 24.77 and 25.39 ml. All four values are different, because of the errors 
and variations inherent in the measurements, and the fourth value (25.39 ml) is sub-
stantially different from the other three. Can this fourth value be safely rejected, so 
that the mean result is reported as 24.73 ml, the mean of the other three readings? In 
statistical terms, is the value 25.39 ml an outlier? The major topic of outlier rejection is 
discussed in detail in Chapters 3 and 6.

Another frequent problem involves the comparison of two (or more) sets of results. 
Suppose we measure the vanadium content of a steel sample by two separate meth-
ods. With the first method the average value obtained is 1.04%, with an estimated 
error of 0.07%, while for the second method the average value is 0.95%, with an error 
of 0.04%. Several questions then arise. Are the two average values significantly differ-
ent, or are they indistinguishable within the limits of the experimental errors? Is one 
method significantly less error-prone than the other? Which of the mean values is 
actually closer to the truth? Again, Chapter 3 discusses these and related questions.

Many instrumental analyses are based on graphical methods. Instead of making 
repeated measurements on the same sample, we perform a series of measurements on 
a small group of standards containing known analyte concentrations covering a con-
siderable range. The results yield a calibration graph that is then used to estimate by 
interpolation the concentrations of test samples (‘unknowns’) studied by the same 
procedure. All the measurements on the standards and on the test samples will be 
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subject to errors, so we must assess the errors involved in drawing the calibration 
graph, and the error in the concentration of a single sample determined using the 
graph. We can also estimate the limit of detection of the method, i.e. the smallest 
quantity of analyte that can be detected with a given degree of confidence. These and 
related methods are described in Chapter 5.

These examples show just a few of the problems arising from experimental errors in 
quantitative analysis. We must next study the various types of error in more detail.

	 1.3	 Types of error

Experimental scientists distinguish three types of error – gross, random and system-
atic errors. Gross errors are so serious that there is no alternative to abandoning the 
experiment and making a completely fresh start. Examples include a complete instru-
ment breakdown, accidentally dropping or discarding a crucial sample, or discovering 
during the course of the experiment that a supposedly pure reagent was in fact badly 
contaminated. Such errors (which occur even in the best laboratories!) are normally 
easily recognised.

We can make the distinction between random and systematic errors by studying a 
real experimental situation. Four students (A–D) each perform an analysis in which 
exactly 10.00 ml of exactly 0.1 M sodium hydroxide is titrated with exactly 0.1 M 
hydrochloric acid. Each student performs five replicate titrations, with the results 
shown in Table 1.1.

Student A’s results have two characteristics. First, they are all very close to each 
other; all the results lie between 10.08 and 10.12 ml. In everyday terms we would say 
that the results are highly repeatable. Their second feature is that they are all too high: 
in this experiment (rather unusually) we know that the correct result should be exactly 
10.00 ml. Evidently two entirely separate types of error have occurred. First, there are 
random errors – these cause replicate results to differ from one another, so that the indi-
vidual results fall on both sides of the average value (10.10 ml in this case). Random errors 
affect the precision, or repeatability, of an experiment. In the case of student A the 
random errors are evidently small, so we say that the results are precise. In addition, 
however, there are systematic errors – these cause all the results to be in error in the same 
direction (in this case they are all too high). The total systematic error (in a given exper-
iment there may be several sources of systematic error, some positive and others nega-
tive; see Chapter 2) is called the bias of the measurement. (The opposite of bias, or 

Table 1.1  Data demonstrating random and systematic errors

Student Results (ml) Average (ml) Comment

A 10.08 10.11 10.09 10.10 10.12 10.10 Precise, biased

B 9.88 10.14 10.02 9.80 10.21 10.01 Imprecise, unbiased

C 10.19 9.79 9.69 10.05 9.78 9.90 Imprecise, biased

D 10.04 9.98 10.02 9.97 10.04 10.01 Precise, unbiased
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lack of bias, is sometimes referred to as trueness of a method: see Section 4.15.) The 
random and systematic errors here are easily distinguished using the experimental 
results, and may also have quite distinct causes in terms of techniques and equipment 
(see Section 1.4). The data obtained by student B are in direct contrast to those of stu-
dent A. The average of B’s five results (10.01 ml) is very close to the true value, so there 
is no evidence of bias, but the spread of the results is very large, indicating poor preci-
sion, i.e. substantial random errors. Comparison of these results with those of student 
A shows clearly that random and systematic errors can occur independently of one 
another. This is also shown by the data of students C and D. Student C’s work has poor 
precision (range 9.69–10.19 ml) and the average result (9.90 ml) is (negatively) biased. 
Student D has achieved both precise (range 9.97–10.04 ml) and unbiased (average 
10.01 ml) results. The distinction between random and systematic errors is summa-
rised in Table 1.2, and in Fig. 1.1 as a series of dot-plots. This simple graphical method 
of displaying data, in which individual results are plotted as dots on a linear scale, is 
often used in exploratory data analysis (EDA, also called initial data analysis, IDA: see 
Chapters 3 and 6).

Table 1.2  Random and systematic errors

Random errors Systematic errors

Affect precision – repeatability 
or reproducibility

Produce bias – an overall deviation of a 
result from the true value even when 
random errors are very small

Cause replicate results to fall on either side 
of an average value

Cause all results to be affected in one sense 
only, all too high or all too low

Can be estimated using replicate 
measurements

Cannot be detected simply by using 
replicate measurements

Can be minimised by good technique but 
not eliminated

Can be corrected, e.g. by using standard 
methods and materials

Caused by both humans and equipment Caused by both humans and equipment

Student A

Student B

Student D

Student C

9.70 10.00 10.30

Correct
result

Titrant volume, ml
Figure 1.1  Bias and precision: dot-plots of the data in Table 1.1.
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In many analytical experiments the most important question is – how far is our 
result from the true value of the concentration or amount that we are trying to meas-
ure? This is expressed as the accuracy of the experiment. Accuracy is defined by the 
International Organization for Standardization (ISO) as ‘the closeness of agreement 
between a test result and the accepted reference value’ of the analyte. The accuracy of 
a single result may thus be affected by both random and systematic errors. The accu-
racy of an average result also has contributions from both error sources: even if sys-
tematic errors are absent, the average result will probably not equal the reference 
value exactly, because of the occurrence of random errors (see Chapters 2 and 3). The 
results from student B demonstrate this. Four of B’s five measurements show signifi-
cant inaccuracy, i.e. are well removed from the true value of 10.00. But the average of 
the results (10.01) is very accurate, so it seems that the inaccuracy of the individual 
results is due largely to random errors and not to systematic ones. By contrast, all of 
student A’s individual results, and the resulting average, are inaccurate: given the 
good precision of A’s work, it seems that these inaccuracies are due to systematic 
errors. Note that, contrary to the implications of many dictionaries, accuracy and pre-
cision have entirely different meanings in the study of experimental errors.

In summary, precision describes random error, bias describes systematic error 
and the accuracy, i.e. closeness to the true value of a single measurement or a 
mean value, incorporates both types of error.

Another important area of terminology is the difference between reproducibility 
and repeatability. We can illustrate this using the students’ results again. In the nor-
mal way each student would do the five replicate titrations in rapid succession, taking 
only an hour or so. The same set of solutions and the same glassware would be used 
throughout, the same preparation of indicator would be added to each titration flask, 
and the temperature, humidity and other laboratory conditions would remain much 
the same. In such cases the precision for each student would be the within-run preci-
sion: this is called the repeatability. Suppose, however, that for some reason the titra-
tions were performed by each student on five different occasions in different 
laboratories, using different pieces of glassware and different batches of indicator. It 
would not be surprising to find a greater spread of the results in this case. The resulting 
data would reflect the between-run precision of the method, i.e. its reproducibility.

•	 Repeatability describes the precision of within-run replicates.

•	 Reproducibility describes the precision of between-run replicates.

•	 The reproducibility of a method is normally expected to be poorer (i.e. with  
larger random errors) than its repeatability.

One further lesson may be learned from the titration experiments. Obviously the 
data obtained by student C are unacceptable, and those of student D are the best. 
Sometimes, however, two methods may be available for a particular analysis, one of 
which is believed to be precise but biased, and the other imprecise but without bias. In 
other words we may have to choose between the types of results obtained by students 
A and B respectively. Which type of result is preferable? A dogmatic answer to this 
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question is impossible: in practice the choice between the methods will often be based 
on their costs, ease of automation, speed, and so on. But we must realise that a method 
substantially free from systematic errors may still, if it is very imprecise, give an aver-
age value that is (by chance) a long way from the correct value. On the other hand a 
precise but biased method (e.g. student A) can be converted into one that is both pre-
cise and unbiased (e.g. student D) if the systematic errors can be discovered and hence 
removed. Random errors can never be eliminated, though by careful technique we can 
minimise them, and by making repeated measurements we can measure them and 
evaluate their significance. Systematic errors can often be removed by careful checks 
on our experimental technique and equipment. This distinction between the two 
major types of error is further explored in the next section.

When a laboratory is supplied with a sample and requested to determine the con-
centrations of one of its constituents, it will estimate, or perhaps know from previous 
experience, the extent of the major random and systematic errors occurring. The cus-
tomer supplying the sample may well want this information incorporated in a single 
statement, giving the range within which the true concentration is reasonably likely to lie. 
This range, which should be given with a probability (e.g. ‘it is 95% probable that the 
concentration lies between . . . and . . .’), is called the uncertainty of the measure-
ment. Uncertainty estimates are now very widely used in analytical chemistry and are 
discussed in more detail in Chapter 4.

	 1.4	 Random and systematic errors in titrimetric analysis

The students’ titration experiments showed that random and systematic errors can 
occur independently of one another, and thus presumably arise at different stages of an 
experiment. A complete titrimetric analysis can be summarised by the following steps:

1	 Making up a standard solution of one of the reactants. This involves (a) weighing a 
weighing bottle or similar vessel containing some solid material, (b) transferring the 
solid material to a standard flask and weighing the bottle again to obtain by subtrac-
tion the weight of solid transferred (weighing by difference), and (c) filling the flask 
up to the mark with water (assuming that an aqueous titration is to be used).

2	 Transferring an aliquot of the standard material to a titration flask by filling and 
draining a pipette properly.

3	 Titrating the liquid in the flask with a solution of the other reactant, added from a 
burette. This involves (a) filling the burette and allowing the liquid in it to drain 
until the meniscus is at a constant level, (b) adding a few drops of indicator solution 
to the titration flask, (c) reading the initial burette volume, (d) adding liquid to the 
titration flask from the burette until the end point is adjudged to have been 
reached, and (e) measuring the final level of liquid in the burette.

So the titration involves some ten separate steps, the last seven of which are nor-
mally repeated several times, giving replicate results. In principle, we should examine 
each step to evaluate the random and systematic errors that might occur. In practice, 
it is simpler to examine separately those stages which utilise weighings (steps 1(a) and 
1(b)), and the remaining stages involving the use of volumetric equipment. (It is not 
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intended to give detailed descriptions of the techniques used in the various stages. 
Similarly, methods for calibrating weights, glassware, etc. will not be given.) The 
tolerances of weights used in the gravimetric steps, and of the volumetric glassware, 
may contribute significantly to the experimental errors. Specifications for these toler-
ances are issued by such bodies as the British Standards Institute (BSI) and the 
American Society for Testing and Materials (ASTM). If a weight or a piece of glassware 
is within the tolerance limits, but not of exactly the correct weight or volume, a sys-
tematic error will arise. Thus, if the standard flask actually has a volume of 249.95 ml, 
this error will be reflected in the results of all the experiments based on the use of that 
flask. Repetition will not reveal the error: in each replicate the volume will be assumed 
to be 250.00 ml when it is actually less.

Weighing procedures are normally associated with very small random errors. In 
routine laboratory work a ‘four-place’ balance is commonly used, and the random 
error involved should not be greater than ca. 0.0002 g (the next chapter describes the 
terms used to express random errors). Since the quantity being weighed is normally 
about 1 g or more, the random error as a percentage of that weight is not more than 
0.02%. A good standard material for volumetric analysis should (amongst other prop-
erties) have as high a formula weight as possible, to minimise these random weighing 
errors when a solution of a specified molarity is being made up.

Systematic errors in weighings can be significant, arising from adsorption of mois-
ture on the surface of the weighing vessel; corroded or contaminated weights; and 
the buoyancy effect of the atmosphere, acting to different extents on objects of dif-
ferent density. Simple experimental precautions can be taken to minimise these sys-
tematic weighing errors. Weighing by difference (see above) cancels systematic errors 
arising from moisture and other contaminants on the surface of the bottle. (See also 
Section 2.12.) If such precautions are taken, the errors in the weighing steps will 
be small, and in most volumetric experiments weighing errors will probably be 
negligible compared with the volumetric ones. Hence gravimetric methods are usu-
ally used for the calibration of items of volumetric glassware, by weighing (in stand-
ard conditions) the water that they contain or deliver; and standards for top-quality 
calibration experiments (Chapter 5) are made up by weighing rather than volume 
measurements.

Most of the random errors in volumetric procedures arise in the use of volumetric 
glassware. In filling a 250 ml standard flask to the mark, the error (i.e. the distance 
between the meniscus and the mark) might be about ;0.03 cm in a flask neck of diam-
eter ca. 1.5 cm. This corresponds to a volume error of about 0.05 ml – only 0.02% of 
the total volume of the flask. The error in reading a burette (the conventional type 
graduated in 0.1ml divisions) is perhaps 0.01–0.02 ml. Each titration involves two 
such readings (the errors of which are not simply additive – see Chapter 2); if the titra-
tion volume is ca. 25 ml, the percentage error is again very small. The experiment 
should be arranged so that the volume of titrant is not too small (say not less than 10 ml), 
otherwise such errors may become appreciable. (This precaution is analogous to 
choosing a standard compound of high formula weight to minimise the weighing 
error.) Even though a volumetric analysis involves several steps, each involving a 
piece of volumetric glassware, the random errors should evidently be small if the 
experiments are performed with care. In practice a good volumetric analysis should 
have a relative standard deviation (see Chapter 2) of not more than about 0.1%. Until 
fairly recently such precision was not normally attainable in instrumental analysis 
methods, and it is still not very common.
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Volumetric procedures incorporate several important sources of systematic error. 
Perhaps the commonest error in routine volumetric analysis is to fail to allow enough 
time for a pipette to drain properly, or a meniscus level in a burette to stabilise. The 
temperature at which an experiment is performed has two effects. Volumetric equip-
ment is conventionally calibrated at 20 °C, but the temperature in an analytical labo-
ratory may differ from this by several degrees, and many experiments in biochemical 
analysis are carried out in ‘cold rooms’ at ca. 4 °C. The temperature affects both the 
volume of the glassware and the density of liquids.

Systematic indicator errors can be quite substantial, perhaps larger than the ran-
dom errors in a typical titrimetric analysis. In the titration of 0.1 M hydrochloric acid 
with 0.1 M sodium hydroxide, we expect the end point to correspond to a pH of 7. In 
practice, however, we estimate this end point using an indicator such as methyl 
orange, which changes colour over the pH range ca. 3–4. So if the titration is per-
formed by adding alkali to acid, the indicator will give an apparent end point when 
the pH is ca. 3.5, i.e. just before the true end point. The error can be evaluated and cor-
rected by doing a blank experiment, i.e. by determining how much alkali is required to 
produce the indicator colour change in the absence of the acid.

It should be possible to consider and estimate the sources of random and system-
atic error arising at each distinct stage of any analytical experiment. It is very impor-
tant to do this, so as to avoid major sources of error by careful experimental design 
(Sections 1.5 and 1.6). In many analyses (though not normally in titrimetry) the over-
all error is in practice dominated by the error in a single step: this point is further dis-
cussed in Chapter 2.

Much of the rest of this text will deal with the handling of random errors, using a wide 
range of statistical methods. Usually we shall assume that systematic errors are absent 
(though methods which test for their occurrence will be described). But first we must 
discuss in more detail how systematic errors arise, and how they may be countered. 
The example of a titrimetric analysis given above showed that systematic errors cause 
the mean value of a set of replicate measurements to deviate from the true value. We 
also learned that systematic errors cannot be revealed merely by making repeated 
measurements, and that unless the true result of an analysis is known in advance – an 
unlikely situation! – very large systematic errors might go entirely undetected unless 
suitable precautions are taken. A few examples will clarify both the possible problems 
and their solutions.

The levels of transition metals in biological samples such as blood serum are impor-
tant in biomedical studies. For many years determinations were made of the serum 
levels of chromium – with some startling results. Different workers, all studying 
pooled serum samples from healthy subjects, published concentrations varying from 
61 to ca. 200 ng ml-1. The lower results were mostly obtained later than the higher 
ones, and it gradually became apparent that the earlier values were due at least partly 
to contamination of the samples by chromium from stainless steel syringes, tube caps, 
and so on. The determination of traces of chromium, e.g. by atomic-absorption spec-
trometry, is relatively straightforward, and no doubt each study achieved results with 

	1.5	 Handling systematic errors
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satisfactory precision; but in a number of cases the large systematic error introduced 
by the contamination was entirely overlooked. Similarly the normal levels of iron in 
seawater are now known to be in the parts per billion (ng ml-1) range, but until fairly 
recently the concentration was thought to be much higher, perhaps tens of μg ml-1. 
This misconception arose from the practice of sampling and analysing seawater in 
ship-borne environments containing high ambient iron levels. Methodological sys-
tematic errors of this kind are extremely common.

Systematic errors also occur widely when false assumptions are made about the 
accuracy of an analytical instrument. A monochromator in a spectrometer may grad-
ually go out of adjustment, so that errors of several nanometres in wavelength settings 
arise, yet many photometric analyses are undertaken without appropriate checks 
being made. Commonplace devices such as volumetric glassware, stopwatches, pH 
meters and thermometers can all show substantial systematic errors, but many labora-
tory workers use them as though they are without bias. Many instrumental analysis 
systems are now computer controlled, minimising the number of steps and the skill 
levels required in their use. It is tempting to regard results from such instruments as 
beyond reproach, but (unless the devices are ‘intelligent’ enough to be self-calibrating – 
see Section 1.7) they are still subject to systematic errors.

Systematic errors arise not only from procedures or apparatus: they can also arise 
from human bias. Some chemists suffer from astigmatism or colour-blindness (the lat-
ter is more common among men than women) which might introduce errors in their 
readings of instruments and in other observations. A number of authors have reported 
various types of number bias, such as a tendency to favour even over odd numbers, or 
0 and 5 over other digits, in the reporting of results. In short, systematic errors of sev-
eral kinds are a constant, and often hidden, risk for the analyst, so very careful steps 
must be taken to minimise them.

There are several approaches to this problem, and any or all of them should be con-
sidered in each analytical procedure. The first precautions should precede any experi-
mental work. The analyst should consider carefully each stage of the proposed 
procedure, the apparatus to be used and the sampling and analytical protocols to be 
adopted. The likely sources of systematic error, such as the instrument functions that 
need calibrating, the steps of the procedure where errors are most likely to occur, and 
the checks that can be made during the analysis, must be identified. Such foresight 
can be very valuable and is normally well worth the time invested. A little thinking of 
this kind should have revealed the possibility of contamination in the serum chro-
mium determinations described above.

The second line of defence against systematic errors lies in the design of the experi-
ment at every stage. We have seen (Section 1.4) that weighing by difference can 
remove some systematic gravimetric errors: these can be assumed to occur to the same 
extent in both weighings, so the subtraction process eliminates them. Another exam-
ple of careful experimental planning is provided by the spectrometer wavelength 
error described above. If the concentration of a single substance is to be determined by 
absorption spectrometry, two approaches are possible. In the first, the sample is stud-
ied in a 1 cm pathlength spectrometer cell at a single wavelength, say 400 nm, and the 
concentration of the test component is determined from the well-known equation 
A = ebc, where A, e, b and c are respectively the measured absorbance, a reference value 
of the molar absorptivity (units l mole-1 cm-1) of the test substance, the pathlength 
(cm) of the spectrometer cell, and the molar concentration of this substance. Several 
systematic errors can arise here. The wavelength might actually be (say) 405 nm rather 




